$Bcx5o(B $B9bL@!JElKLBg3X!K!&I4@%!!7r!JEl5~Bg3X!K!&NkLZ(B $B>O8g!J(B($B3t(B)$B%j%3! |
$BM%=($JH/I=$r$5$l$?3X@82q0w$NJ}$K$O!$(B$BM%=(H/I=>^(B$B$rB#Dh$7$^$9!%(B
$B:G=*99?7F|;~!'(B2018-02-12 17:39:01
$B$3$NJ,N`$G$h$/;H$o$l(B $B$F$$$k%-!<%o!<%I(B | $B%-!<%o!<%I(B | $B | |
---|---|---|---|
Hydrothermal | 4$B7o(B | ||
supercritical carbon dioxide | 4$B7o(B | ||
Biomass | 3$B7o(B | ||
Hot compressed water | 2$B7o(B | ||
micronization | 2$B7o(B | ||
supercritical CO2 | 2$B7o(B | ||
Supercritical hydrothermal synthesis | 2$B7o(B | ||
nanoparticles | 2$B7o(B | ||
supercritical | 2$B7o(B | ||
kinetics | 2$B7o(B | ||
Activation energy | 1$B7o(B |
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BH/I=7A<0(B | |
---|---|---|---|
59 | $B9b299b05?e$rMQ$$$?%3!<%R!<@8F&$+$i$N93;@2=@-@.J,Cj=P$K$*$1$k29EY$H05NO$N1F6A(B | coffee high temperature water extraction | O |
67 | $BFs;@2=C:AG$rMxMQ$7$?@QAX7?(BPET$BB?9&BN$N5$9&N($N@)8f(B | polyethylene terephthalate porous material porosity | O |
127 | $B%^%$%/%m%9%o!<%k%_%-%5!<$rMQ$$$?D6NW3&IOMOG^>=@O$K$h$k%+%m%F%N%$%I$NHy:Y2=(B | Micro swirl mixer Supercritical carbon dioxide Micronization | O |
144 | Extraction of Catechins from Gambir (Uncaria gambir) using Supercritical Carbon Dioxide Extraction with Ethanol as Entrainer. | Uncaria gambir catechin supercritical CO2 | O |
197 | $B9b05NO5$1U3&LL%W%i%:%^$K$h$k(BTiO2/C$BJ#9g%J%NN3;R$N%o%s%9%F%C%W9g@.(B | plasma photocatalyst titanium oxide | O |
234 | $B%"%i%K%s$N?eG.J,2r$K$*$1$kH?1~7PO)$*$h$SB.EYO@$K4X$9$k8!F$(B | alanine hydrothermal reaction kinetics | O |
236 | $B1U2=%8%a%A%k%(!<%F%k$rMQ$$$?%j%]%=!<%`$ND4@=(B | liposome liquefied dimethyl ether | O |
251 | $BD6NW3&Fs;@2=C:AG$rIOMOG^$H$7$FMQ$$$?%"%9%?%-%5%s%A%s(B/$B@8BNE,9g@-%]%j%^!<$NHyN3;R2=(B | supercritical carbon dioxide astaxanthin micronization | O |
257 | [$BE8K>9V1i(B] $B9b@E?e05=hM}$K$h$kC&:YK&2=@8BNAH?%$N3+H/$H$=$N0eNE1~MQ(B | Decellularization High-hydrostatic pressure Tissue Engineering | O |
258 | [$BE8K>9V1i(B] $B?eAG%9%F!<%7%g%sMQJ#9gMF4oC_054o$N5;=Q4p=`$N8!F$(B | CFRP Hydrogen station Accumulator | O |
259 | [$BE8K>9V1i(B] $B$=$N>l(BX$B@~2s@^$rMQ$$$??eG.2<$K$*$1$k%H%P%b%i%$%H@8@.2aDx$N2r@O(B | synchrotron in situ XRD tobermorite | O |
277 | $B9b05Fs;@2=C:AGCf$G$N%(%l%/%H%m%9%W%l! | hollow particle electrospray pressurized CO2 | O |
304 | $B1U2=%8%a%A%k%(!<%F%k$rMQ$$$?Hy:YAtN`(BDesmodesmus subspicatus$B$+$i$NL};iCj=P5Z$S;i | Liquefied dimethyl ether Desmodesumus subspicatus lipid class | O |
388 | $B?eG.2DMO2=$HKlJ,N%$rAH$_9~$s$@%a%?%sH/9Z%7%9%F%`$N3+H/(B | Hydrothemal liquefaction Biomass Methane fermentation | O |
467 | [$B>7BT9V1i(B] $BD6NW3&N.BN=hM}$K$h$kG3NAEECSMQGr6b9g6b%J%NN3;RO"7k?(G^$N3+H/(B | Supercritical Fluid Treatment Connected Pt-alloy Nanoparticle Catalyst Fuel Cell | O |
487 | [$B>7BT9V1i(B] $B6K@-JQ2=$rMxMQ$7$?(BCO2$BJ,N%5;=Q(B | CO2 capture amine polarity switching | O |
532 | $BD6NW3&Fs;@2=C:AGCf$G$N2M66%]%j%"%/%j%k;@$N9g@.(B | supercritical carbon dioxide acrylic acid synthesis | O |
546 | $B%^%$%/%mGH2CG.$rMQ$$$k%G%s%W%s$N0!NW3&?eE|2=(B | Microwave heating Starch Subcritical water | O |
569 | $BD6NW3&Fs;@2=C:AGCf$G$N%l!<%6!<%"%V%l!<%7%g%s$K$h$k6bB0(B-$BC:AGJ#9g%J%NN3;R$N9g@.(B | laser ablation supercritical CO2 nanoparticles | O |
586 | $B?eG.=hM}$K$h$kGQ1U=hM}5;=Q$N3+H/(B | hydrothermal dechloriantion kinetics | O |
602 | $B9b299b05?e$rMQ$$$?%^%m%s;@M6F3BN$N2C?eJ,2r5Z$SC&C:;@H?1~(B | Hot compressed water Malonate derivatives Decarboxylation and hydrolysis | O |
628 | $BD6NW3&?eCf$NJ#9g;@2=J*HyN3;R9g@.$K$*$1$kM-5!2=9gJ*$K$h$k$=$N>lI=LL=$>~$N1F6A(B | Supercritical hydrothermal synthesis mixed oxide nanoparticles in situ surface modification | O |
669 | $BD6NW3&$*$h$S1UBN>uBVCf$K$*$1$k%$%V%W%m%U%'%s$N3H;678?t$NB,Dj$HAj4X(B | diffusion ibuprofen supercritical | O |
670 | $B%K%e!<%H%j%N%l%9Fs=E%Y!<%?Jx2u8!=P$r4k?^$7$?1UBN%7%s%A%l!<%?MQ%"%k%+%jEZN`6bB0%b%j%V%G%s;@1v$N%J%NN3;R9g@.(B | molybrate nanoparticles scintillators | O |
671 | [$B>7BT9V1i(B] $BJ#9g;@2=J*%J%NN3;R$ND6NW3&?eG.9g@.$HM}O@7W;;$N3hMQ(B | Supercritical hydrothermal synthesis Composite oxide nanoparticles DFT calculation | O |
692 | Production of PVP-curcumin Nano-microparticles by Swirl Mixer under Dense CO2 | nano-microparticles swirl mixer dense CO2 | O |
725 | $BD6NW3&4^?;K!$K8~$1$?%a%=%]!<%i%9%7%j%+$X$N6bB0A06nBN5[CeJ?9U$N%b%G%j%s%0(B | Adsorption equilibria Supercritical fluid impregnation 2D-SAFT-VR | O |
731 | $B9b299b05?e=hM}$K$h$k%7%k%/%U%#%V%m%$%s$+$i$N%]%j%Z%W%A%I@8@.(B | Silk Hydrothermal Biomass | O |
734 | $B9b299b05?e=hM}$K$h$k&B(B-$B%0%k%+%s$+$i$N%*%j%4E|@8@.(B | Beta-glucan Hydrothermal Biomass | O |
803 | $BD6NW3&Fs;@2=C:AGCf$G$N%^%$%/%m:.9g$rMxMQ$7$?(Blecithin$B%J%NJ,;61U$NO"B3@=B$(B | supercritical carbon dioxide lecithin micro-mixing | O |
931 | $BG.?e>r7o2<$K$*$1$k%"%_%s?eMO1U$rMQ$$$?=-AG7OFqG3:^$NC&=-AG2=(B | Hydrothermal Debromination Brominated flame retardants | O |
955 | $B%,%9K0OBMOBNJ.L84%AgK!$K$h$k%F%*%U%#%j%sHyN3;RAO@=$KBP$9$k1UE)4%Ag5sF0$N1F6A(B | PGSS-SD Theophylline microparticles Drying behavior | O |
958 | $B9b05G.?eCf$G$N%?%s%Q%/ | Protein degradation Hot compressed water Activation energy | O |
959 | $BD6NW3&Fs;@2=C:AG$rMQ$$$?Lt:^$N(BpH$B1~Ez@-9bJ,;R$K$h$k%^%$%/%m%3!<%F%#%s%0(B | supercritical carbon dioxide encapsulation | O |
982 | CO2/N2$B:.9g5$BN$rH/K":^$H$7$?9bJ,;RH/K"BN$N9=B$@)8f(B | Polymer foam Polystyrene Mixed gas | O |
996 | RESS$BK!$K$h$k(BTIPS$B%Z%s%?%;%sGvKlBO@Q$KBP$9$k4pHD$NI=LL>uBV$H@_CV3QEY$N1F6A(B | RESS TIPS-Pentacene thin films Substrate surface conditions | O |